Critical properties of Ising model on Sierpinski fractals . A finite size scaling analysis approach

نویسندگان

  • José M. Carmona
  • Umberto Marini Bettolo Marconi
  • Juan J. Ruiz-Lorenzo
  • Alfonso Tarancón
چکیده

The present paper focuses on the order-disorder transition of an Ising model on a self-similar lattice. We present a detailed numerical study, based on the Monte Carlo method in conjunction with the finite size scaling method, of the critical properties of the Ising model on some two dimensional deterministic fractal lattices with different Hausdorff dimensions. Those with finite ramification order do not display ordered phases at any finite temperature, whereas the lattices with infinite connectivity show genuine critical behavior. In particular we considered two Sierpinski carpets constructed using different generators and characterized by Hausdorff dimensions dH = ln 8/ ln 3 = 1.8927.. and dH = ln 12/ ln 4 = 1.7924.., respectively. The data show in a clear way the existence of an order-disorder transition at finite temperature in both Sierpinski carpets. By performing several Monte Carlo simulations at different temperatures and on lattices of increasing size in conjunction with a finite size scaling analysis, we were able to determine numerically the critical exponents in each case and to provide an estimate of their errors. Finally we considered the hyperscaling relation and found indications that it holds, if one assumes that the relevant dimension in this case is the Hausdorff dimension of the lattice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase Transitions on Sierpinski Fractals

The present paper focuses on the order-disorder transition of an Ising model on a self-similar lattice. We present a numerical study, based on the Monte Carlo method in conjunction with the finite size scaling method, of the critical properties of the Ising model on a two dimensional deterministic fractal lattice of Hausdorff dimension dH = ln 8/ ln 3 = 1.89278926.... We give evidence of the ex...

متن کامل

Critical Behavior of the Ferromagnetic Ising Model on a Sierpiński Carpet: Monte Carlo Renormalization Group Study

We perform a Monte Carlo Renormalization Group analysis of the critical behavior of the ferromagnetic Ising model on a Sierpiński fractal with Hausdorff dimension df ≃ 1.8928. This method is shown to be relevant to the calculation of the critical temperature Tc and the magnetic eigen-exponent yh on such structures. On the other hand, scaling corrections hinder the calculation of the temperature...

متن کامل

Critical exponents for Ising-like systems on Sierpinski carpets

2014 The critical properties of Ising models on various fractal lattices of the Sierpinski carpet type are studied using numerical simulations. We observe scaling and measure the exponents 03B3 and 03BD which are then compared to the values which have been recently extrapolated from the Wilson-Fisher 03B5-expansion in non integer dimensions. It appears that in the general case an effective dime...

متن کامل

Scaling law of Wolff cluster surface energy

We study the scaling properties of the clusters grown by the Wolff algorithm on seven different Sierpinski-type fractals of Hausdorff dimension 1 < df ≤ 3 in the framework of the Ising model. The mean absolute value of the surface energy of Wolff cluster follows a power law with respect to the lattice size. Moreover, we investigate the probability density distribution of the surface energy of W...

متن کامل

Critical finite-size scaling with constraints: Fisher renormalization revisited

The influence of a thermodynamic constraint on the critical finite-size scaling behavior of three-dimensional Ising and XY models is analyzed by MonteCarlo simulations. Within the Ising universality class constraints lead to Fisher renormalized critical exponents, which modify the asymptotic form of the scaling arguments of the universal finite-size scaling functions. Within the XY universality...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008